Artikkel

Konfirmasjonsbilder av universet avslører sein stjernefødsel

Reionisering av universet
Illustrasjon som viser den tidlige utviklingen av universet, fra opprinnelsen av de første kosmiske bakgrunnstrålene (t.v.) til slutten av reioniseringsepoken. Illustrasjon: ESA – C. Carreau

Konfirmasjonsbilder av universet avslører sein stjernefødsel

De første stjernene ble ifølge nye strålingskart dannet i universets ungdomsår, mye seinere enn tidligere antatt. 
Hans Kristian Kamfjord Eriksen
Hans Kristian Kamfjord Eriksen. Foto: Privat

– Det vi ser nå er det vi kan kalle konfirmasjonsbildet av universet.

– Det viser at de første stjernene i universet ble dannet mye seinere enn man tidligere har trodd, sier professor Hans Kristian Kamfjord Eriksen.

Ved å studere ”fossilt lys” fra universets ungdomsår, har en gruppe forskere nå endret vår forståelse av den tidlige utviklingen av universet. 

Blant dem finner vi Eriksen og forsker Ingunn Kathrine Wehus fra Institutt for teoretisk astrofysikk.

Universets barneår

Først må vi litt tilbake i tid. Ca. 13.8 milliarder år. Universet er et par sekunder gammelt.

Det som i dag er uendelig mengder stjerner og galakser, er på denne tiden en ganske unnselig ursuppe bestående av elektroner, protoner, nøytroner og fotoner.

Omtrent 380 000 år etter Big Bang, altså fortsatt i universets barneår, begynte elektroner og protoner å slå seg sammen til hydrogenatomer, en fase vi kaller rekombinasjon.

Ingunn Kathrine Wehus
En av forskerne bak studien, Ingunn Kathrine Wehus. Foto: Privat

Disse sammenslåingene kan i dag registreres av teleskoper, og er det vi kjenner som kosmisk bakgrunnsstråling eller CMB.

Ungdomssopprør

Mens universet stadig utvidet seg og ble avkjølt, kunne materie gradvis danne større strukturer lik dem vi kjenner i dag, som for eksempel stjerner.

Samtidig som stjernene gjorde omgivelsene lysere, førte den kraftige ultrafiolette strålingen deres til at hydrogen-atomer ble splittet tilbake til sin utgangsform, elektroner og protoner.

Denne litt opprørske prosessen, hvor mesteparten av universets materie ble ionisert av stjernene, er det vi kaller reioniserings-epoken.

Epoken er en av de sentrale fasene i universets utvikling, og er derfor noe forskerne higer etter å datere. 

– For kosmologer er dannelsen av strukturer som stjerner et av hovedmålene, og reioniseringsepoken er derfor et av de heteste temaene innen fagfeltet, forklarer Eriksen.

– Man er ganske enige om at den var ferdig ca. 900 millioner år etter Big Bang. Men når den begynte, har man vært uenig om.

Kartlegger universets ungdomsår

Polariseringskart over bakgrunnstråling
Polariseringskart over bakgrunnstråling. Illustrasjon: ESA

For å få en pekepinn på når reioniserings-epoken startet, har forskerteamet benyttet såkalte polariseringskart. En del av bakgrunnsstrålingen fra reioniserings-epoken er nemlig polarisert, det vil si at den vibrerer i én bestemt retning.  

Polariseringen oppstår idet lyspartikler dulter borti elektroner. Etter at stjerner oppsto og reioniserte materie, ble elektroner frigjort og slike kollisjoner hyppigere.

Når polariserings-signaler plukkes opp i dag, flere milliarder år senere, kan de dermed si noe om når stjernene oppsto.

– Kartene vi har lagd av polarisert bakgrunnsstråling er de reneste noensinne, og stammer fra det sensitive høyfrekvens-instrumentet av Planck-satellitten, forteller Wehus.

Stjerner hovedkilden til ionisering

PLANCK-satellitten

  • ESA-satellitt
  • I operasjon fra 2009-2013
  • Hovedformål å registrere kosmisk bakgrunnsstråling

Kilde: Wikipedia

Ifølge de nye resultatene var halvparten av reioniserings-epoken over omtrent 700 millioner år etter Big Bang, mye seinere enn tidligere estimater, som tilsa mellom 100-550 millioner år.

Det forskyver dermed også de første stjernefødslene fremover i tid.

Problemet med de tidlige estimatene, var at de innebar at reioniseringen må ha vært forårsaket også av andre objekter enn stjerner. Den nye dateringen viser imidlertid at stjernene alene kan ha stått for reioniseringen av universet.

En annen forlokkende følge av den nye timingen, er at de første generasjoner med galakser sannsynligvis ligger innenfor målbar rekkevidde for fremtidens astronomiske instrumenter. Kanskje til og med dagens, hevder forskerne bak studien. 

Les mer på Titan.uio.no:

Galaksers brutale gjengliv

Usynlig univers

Strålende utsikter for solforskningen

Kontakt:

Hans Kristian Kamfjord Eriksen

Ingunn Katrhine Wehus

Referanse

Planck Collaboration (2016) Planck intermediate results. XLVII. Planck constraints on reionization history' and 'Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth. Astronomy & Astrophysics. 

Kategori: 

Skriv ny kommentar

Verifiser deg (din epost-adresse vil ikke bli vist offentlig)

Les også

Indre detektor i Atlas skiftes ut

Forbereder hjertetransplantasjon i verdens største maskin

Hva er halvparten så stort som Notre Dame og veier like mye som Eiffeltårnet? "Atlas" fungerer som et avansert digitalkamera som tar bilder på 100 megapiksler opp mot én milliard ganger i sekundet. Nå skal det oppgraderes – med hjelp fra UiO-forskere.

Romferd

2024: En marsodyssé

Romferden vi har ventet på, begynner å nærme seg. Men hvorfor skal vi ta reisen?

Etter et halvt år i rommet, omgitt av mørke, nærmer romskipet seg den røde planeten.

Tønnes Nygaard (t.v.), Kyrre Glette

Fem felt der vi får en førerløs fremtid

Droner som kan varsle flom og skogbrann. Ubemannede reiser til Mars og andre planeter. Mikroskopiske roboter i kroppen på jakt etter kreftceller. Er du opptatt av autonomi  selvstyrende teknologi kan 3. mai bli en spennende dag.