A “dopamine factory” operated straight into the brain

Ørjan Martinsen og Håvard Kalvøy
Ørjan G. Martinsen and Håvard Kalvø. Photo: Hilde Lynnebakken/UiO Bruk bildet.

A “dopamine factory” operated straight into the brain

New medicine may have a big impact on the treatment of different kinds of brain disease.


The project European Training Network for Cell-based Regenerative Medicine (Training4CRM) is being run by DTU in Copenhagen.

In addition to UiO, universities from Madrid, Lund, Milano and Barcelona are project participants, together with 3 industrial and 6 other partners.

The project has received financial funding from Marie-Sklodowska-Curie Innovative Training Networks, a part of the EU research initiative Horisont 2020 where only 7 percent of the applications received funding.

15 PhD students will receive their PhD contributing to this project, two of them from UiO.

The scientists from UiO and OUS are working together through Oslo Bioimpedance Group - a group that specializes in the study of the electrical characteristics of biological tissue.

Patients suffering from Parkinson, Huntington, ALS, Alzheimer’s and Epilepsy can experience substantial positive effects from medication using dopamine or other neurotransmitters – organic chemicals that transmit nerve impulses inside the brain.

Dopamine through remote control

Imagine it was possible to operate brand new cells into the human brain and that these specific cells produce dopamine themselves. As a consequence, the brain could provide itself with the medicine it needs.

Imagine also that this self-producing dopamine factory is steered by remote control, making it possible to customize the medication to the specific needs of the patient.

READ this article in Norwegian

It all sounds very Science Fiction, but this is nevertheless the objective of a European research imitative where scientists from UiO and Oslo University Hospital (OUS) are participating.

Recently they received the backing of an EU research initiative named Horsiont 2020. Professor Jenny Emnéus at Denmark Technical University (DTU) is head of the project.

Best in the business


A memristor is named after the fourth fundamental electrical component. The others are resistor, capacitor and inductor.

The word memristor is the product of two other words; memory and resistor. It is a component that operates like a resistor but with a memory.

The memristor was discovered theoretically by Leon Chua at Berkely in 1971, but the first component with any practical usage was made as late as 2007.

In Oslo the scientists study, in collaboration with Chua, the memristive properties of biological tissue.

– The scientists at DTU are in the world elite in creating cells that produce dopamine, says Professor in electronics Ørjan G. Martinsen at the Department of Physics.

The cells are cultivated on a rack of carbon and they start producing dopamine when illuminated by light.

Right here is the key to controlling the dopamine production: Cells, optics and controlling electronics will simultaneously be operated into the patient’s brain.

– This is a fantastic opportunity to reach out to a new group of patients, says Håvard Kalvøy, head of research at department of Medical Technology at Oslo University Hospital.

– If we succeed we can give a lot of people a better life. That is extremely motivating, Kalvøy exclaims.

The Norwegian scientists contribute with knowledge of impedance measurements, especially microelectrodes and memristors, and with clinical experience on animal testing at OUS.

– It’s very exciting to be able to contribute with our distinctive knowledge, says Martinsen, but it will be even more exciting to collaborate with other science communities and learn from their expert knowledge.

Also read at

Modeling the brain as an electrochemical machine

Other articles in English

This article in Norwegian

Contact information:

Professor Ørjan G. Martinsen at the Department of Physics

Guest Scientist Håvard Kalvøy at the Department of Physics

Les også

Helikopterfrøene fra det tropiske treet Dipterocarpus alatus har imponerende vinger.

3D-printing forklarer hvordan «helikopterfrø» flyr

Mange tropiske tresorter har store "helikopterfrø" som blant annet har begeistret BBC-legenden David Attenborough. Tre UiO-matematikere har nå undersøkt geometrien hos både naturlige og 3D-printede helikopterfrø, og resultatene tyder på at naturen fant den optimale løsningen for millioner av år siden.  

Ingrid Glad

Fullt hus på innovasjonskonferanse

Over 500 mennesker fra næringslivet, offentlig sektor og akademia møtte opp på den første innovasjonskonferansen "Fra data til innsikt".
De elektriske signalene fra netthinnen kan oppfattes som pixler, som igjen kan beskrives som tall

Hjernens visuelle «skysstasjon» er egentlig en portvokter

Den lille hjernestrukturen som heter LGN ble lenge sett på som en litt uinteressant «skysstasjon» for transport av synsinntrykk fra netthinnen og videre innover i hjernen. Men i virkeligheten kan de 100 000 cellene der spille en aktiv rolle som portvokter og bestemme hvilke bilder hjernebarken skal få se.

Nyheter fra andre